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We study time-modulated Taylor–Couette flow for the simple case in which the
inner cylinder’s angular velocity oscillates around zero mean at given amplitude and
frequency and the outer cylinder is at rest. We find that, provided the amplitude of
modulation is large enough, two classes of Taylor vortex flows are possible – reversing
and non-reversing. In the latter, which takes place at relatively high frequency, the
direction of the Taylor vortices does not change every half-cycle.

1. Introduction
The classical formulation of the Taylor–Couette flow problem consists of an

incompressible fluid of constant density and viscosity which is contained between
two coaxial cylinders. Typically the height of the cylinders is much larger than the
gap between them, the outer cylinder is held fixed, and the inner cylinder is kept
in rotation at constant angular velocity Ω1. If Ω1 is small, the velocity field is
purely azimuthal (circular Couette flow), but if Ω1 exceeds a critical value Ω10, then
axisymmetric perturbations become unstable and the resulting secondary flow consists
of alternating pairs of vortices in the axial direction (Taylor vortex flow). At higher
velocity Taylor vortex flow loses stability to non-axisymmetric perturbations (wavy
modes). If the drive is increased, further transitions take place, and, if one allows
rotations of the outer cylinder, the variety of flows is even richer.

Our concern is the case in which Ω1 is not constant but oscillates harmonically
in time. This modulated Taylor–Couette problem has been the subject of a number
of investigations which attempted to answer the natural question of whether the
modulation makes the flow more or less stable to the onset of vortices than in the
steady case. The problem can also be tackled in the context of spherical Couette
flow, as recently done by Zhang (2002) and Zhang & Zhang (2002). The oscillating
boundary induces a damped viscous wave which penetrates into the fluid a distance of
the order of the thickness of the Stokes layer, δs = (2ν/ω)1/2, where ν is the kinematic
viscosity and ω is the frequency of modulation. In this paper we are concerned with
the basic case in which the frequency is low enough that the size of the Stokes layer
is comparable to the gap between the cylinders. The high-frequency limit of a thin
Stokes layer, which was studied for example by Barenghi, Park & Donnelly (1980) in
cylindrical geometry and by Hollerbach et al. (2002) in spherical Couette flow, will
not be addressed here.

The most studied case of modulated Couette flow is that in which the inner cylinder
oscillates about some mean value with some given amplitude

Ω1(t) = Ω1m + Ω1a cos(ωt), (1.1)
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such that the peak angular velocity Ω1m + Ω1a is of the order of the onset of vortices
in the steady case, Ω10. In particular we note the experiments of Donnelly (1964) and
Walsh & Donnelly (1988a, b), who discovered that at low frequency of modulation
the stability of the flow is greatly enhanced. On the theoretical side, the problem
was tackled in the narrow gap limit by Hall (1983), who derived an amplitude
equation, and by Riley & Lawrence (1977), who used Floquet theory. Carmi &
Tustaniwskyj (1981) extended the Floquet approach to finite values of radius ratio.
Barenghi & Jones (1989) and Barenghi (1991) solved the Floquet problem as well
as the fully nonlinear time-dependent Navier–Stokes equation, and compared their
finite-amplitude, time-dependent solutions to measurements. A similar approach was
followed by Kuhlmann, Roth, & Luecke (1989), who also developed a mode truncation
model. Mode truncation was also used by Hsieh & Chen (1984) and Bhattacharjee,
Banerjee & Kumar (1986). Almost all of these authors did not limit themselves to the
most studied case (equation (1.1) with Ω1m +Ω1a ≈ Ω10), but studied other variations
of the problem, including steady and periodic motions of the outer cylinder. More
recently a new class of time-modulated Taylor–Couette problems in which the inner
cylinder moves periodically in the axial direction has been introduced and studied by
Marques & Lopez (1997) and Lopez & Marques (2001).

Since the parameter space of the modulated Taylor–Couette problem is so large
(besides the radius ratio, one has to specify mean value, amplitude and frequency of
modulation of each cylinder), there are many interesting cases to study. The aim of
this paper is to present a new class of solutions of the simplest of all cases, that in
which the outer cylinder is fixed and the inner cylinder oscillates around zero mean,
like a washing machine:

Ω1(t) = Ω1a cos (ωt). (1.2)

2. Formulation of the problem
We use cylindrical coordinates (r, φ, z), call R1 and R2 respectively the inner and

outer radius and make the usual assumption that the cylinders have infinite height.
The flow is described by the incompressible Navier–Stokes equations

∂v

∂t
+ v · ∇v = − 1

ρ
∇p + ν∇2v, (2.1)

∇ · v = 0, (2.2)

where v is the velocity and p is the pressure. The density, ρ, and the kinematic
viscosity, ν, are constant. The boundary conditions for v are the no-slip conditions, so
vr = vφ = vz = 0 at r = R2, and vr = vz = 0, vφ = R1Ω1(t) at r = R1, where Ω1(t) is
given by equation (1.2). We make the equations dimensionless using the length scale
δ = R2 − R1 and the viscous time scale δ2/ν. Equation (1.2) is then expressed in terms
of the Reynolds number

Re1(t) = Remod cos(ωt), (2.3)

where Remod = Ω1aR1δ/ν and now t and ω are the dimensionless time and frequency
of modulation respectively. The other parameter of the problem is the radius ratio
η = R1/R2. We call Re10 = Ω10R1δ/ν the Reynolds number which corresponds to the
onset of Taylor vortex flow in the steady case.

Equations (2.1) and (2.2) are time stepped using a combination of second-order-
accurate Crank–Nicolson and Adams–Bashforth methods. The velocity components
are represented by potentials which are expanded spectrally over Fourier modes in
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the azimuthal and axial directions and over Chebyshev polynomials in the radial
direction, for which a generic field A(x, φ, z, t) has the form

A(x, φ, z, t) =

N∑

n=0

∑

|k|<K

∑

|m|<M

Ankm(t) T ∗
n (x)ei(αkz+mφ) (2.4)

on the domain [0, 1] × [0, 2π] × [0, 2π/α] where T ∗
n (x) is the nth shifted Chebyshev

polynomial and x is given by r = η/(1 − η) + x. Spectral truncations as high as
K = 12, M = 8 and N = 16 were used, where K , M and N are the numbers of axial,
azimuthal and radial modes respectively.

The details have been published in Willis & Barenghi (2002). Here it suffices to say
that the code has been tested in the linear and nonlinear axisymmetric regime against
published results of Barenghi (1991) and Jones (1985). Tests of the code in the wavy
mode regime have been done against the findings of King et al. (1984) and Marcus
(1984).

3. Results
All our calculations are performed at radius ratio η = 0.75. At this value of

η, in the steady case, the critical Reynolds number for the onset of Taylor vortex
flow is Re10 = 85.78 and the (dimensionless) critical axial wavenumber is αc =3.13.
In the modulated case α depends strongly on the frequency of modulation ω. The
calculations that follow were performed with variable α to determine the critical
axial wavenumber at each frequency. We have also performed fully three-dimensional
calculations that allow the existence of non-axisymmetric wavy modes, but found
that, within the parameter range explored, the wavy modes always decay and the
resulting solution is axisymmetric. Our initial conditions consist of seeding all the
spectral modes for the velocity components with small random numbers of order of
magnitude 10−3; we then integrate the equations of motion in time, until, after an
initial transient, a settled oscillation is achieved.

3.1. Reversing Taylor vortex flow

Typical results at small frequency of modulation (ω � 4) are shown in figure 1. The
solid curve represents the radial velocity component vr (t) computed at the outflow
jet (z = π/α) in the middle of the gap. Since vr vanishes when the flow is purely
azimuthal (circular Couette flow), by monitoring its value we detect the existence of
Taylor vortex flow. Note that we plot vr only for t > 11, ignoring the initial transient.
The dashed curve in the figure represents the driving Reynolds number, Re1(t), which
peaks at ±Remod = ±154.71. We shall compare the values of Re1(t) to the horizontal
line at Re1 =Re10 which, in the steady case, denotes the onset of Taylor vortex flow.
The second horizontal line at Re1 = −Re10 corresponds to the onset of Taylor vortex
flow of opposite polarity, which is created when the cylinder rotates in the opposite
direction.

Initially the Reynolds number Re1(t) increases starting from the left of figure 1.
Quasi-statically, we expect that, when Re1(t) reaches a value of the order of Re10,
azimuthal flow becomes unstable and vr grows exponentially; then, as Re1(t) becomes
smaller than Re10, vr peaks and quickly drops toward zero. The phase lag between
the maximum values of Re1(t) and vr is expected, as it takes a certain time for the
fluid in the middle of the gap to respond to the drive. Soon afterward the motion
of the inner cylinder becomes supercritical again but in the opposite direction, and a
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Figure 1. Radial velocity vr versus time in the middle of the gap at the outflow computed
at the (dimensionless) position z = π/α, r = (1 + η)/2(1 − η) for RTVF. N = 12, K = 8,
M = 4, η = 0.75, Remod = 154.71 (which is Remod = 1.1Remod,c with Remod,c = 140.65), ω = 3,
αc = 2.86. Horizontal lines show ±Re10 = 85.78 and the dashed curve is Re1(t).

new Taylor vortex pair is formed starting from the vanishingly small remains of the
previous cycle. Note that this time the flow has opposite polarity, so vr is negative
(inflow jet). Examination of the flow at later times confirms that this pattern persists
in a settled way, alternating Taylor vortex flow of opposite polarity. We call this flow
reversing Taylor vortex flow (RTVF). For this flow the period of the driving τ = 2π/ω

is 2.09 and the flow responds to this driving with a period of 2.09, which is τ .
It is important to appreciate that the critical Reynolds number for the onset of

reversing Taylor vortex flow is not Remod =Re10 but higher. It is in fact possible
that during the initial transient, vr is of order unity, but, after a few cycles, Taylor
vortex flow vanishes, and one observes a series of peaks of exponentially decreasing
amplitude. The more striking feature of reversing Taylor vortex flow, the sharpness
of the peaks, is due to the alternation of exponential growth and decay, and was also
observed in the previous calculations of Barenghi & Jones (1989) and Kuhlmann et al.
(1989) as well as in the experiments of G. Ahlers (1987, personal communication).

Figure 2 confirms that the observed change of sign of vr at a particular position
is significant, and that we are truly dealing with vortex pairs of opposite polarity.
The arrows in this time sequence denote the radial and axial components of the
velocity field. The height of each plot extends to one wavelength 2π/α, the (moving)
inner cylinder is on the left and the (fixed) outer cylinder is on the right. At (a) we
have a fully formed Taylor vortex pair in the forward direction, the outflow being
at z = π/α. At (b) we see the first appearance of reversed vortices close to the inner
cylinder. At (c) and (d) the reversed Taylor vortex pair grows and extends across the
gap. At (e) the forward Taylor vortex pair disappears, and at (f ) we have a fully
formed Taylor vortex pair in the reversed direction. Figure 2 thus shows a smooth
transition from forward-rotation vortices to reverse-rotation vortices. Note that at
stages (c) and (d) there are four cells within a wavelength. This situation is similar
to the traditional case of (steady) counter-rotating Taylor vortex flow. The difference
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Figure 2. Reversing Taylor vortex flow at different times in the interval 12 � t � 12.5.
(a): Taylor vortex pair in the forward direction; note the outflow at z = π/α; (b): reversing
vortices appear near the inner cylinder; (c): the reversed Taylor vortices grow; (d): the reversed
Taylor vortices fill the gap; (e): the forward Taylor vortex pair disappears; (f ): fully formed
Taylor vortex pair in the reverse direction.

is that in our (time-dependent) case the nodal line, which separates the reversed pair
from the forward pair, moves across the gap during a cycle.

3.2. Non-reversing Taylor vortex flow

Figure 3 shows typical results at higher frequency of modulation. The parameters are
now Remod = 170.41 and ω = 5. It is apparent that the direction of the radial velocity,
vr , remains the same (the peaks are always positive), despite the change of direction
of the driving inner cylinder. By examining plots similar to figure 2, we conclude that
there is no sign of formation of a reversed vortex pair. We call this flow non-reversing
Taylor vortex flow (NRTVF). In this case the period of the driving is τ = 1.26 but
the flow responds with a period of 0.63, which is τ/2.

Many papers have reported the existence of synchronous and subharmonic solutions
in the modulated Taylor–Couette problem, see for example, Barenghi (1991) and
Kuhlmann et al. (1989). In the case of modulation of the outer cylinder around
zero mean with a constantly rotating inner cylinder Lopez & Marques (2002) found
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Figure 3. Radial velocity vr versus time in the middle of the gap at the outflow computed
again at the (dimensionless) position z = π/α, r = (1 + η)/2(1 − η) for NRTVF. Parameters as
in figure 1 except Remod = 170.41 (which is Remod = 1.1Remod,c with Remod,c = 154.91), ω = 5,
α = 3.73. Horizontal lines show ±Re10 = 85.78 and the dashed curve is Re1(t).

that the synchronous solutions are non-reversing and the subharmonic solutions are
reversing. In our problem we have found that both RTVF and NRTVF solutions are
synchronous; to confirm it we calculated the radial velocity at the centre of the axial
period, which is a symmetric position, and at various other non-symmetric points.
We found that our solutions are indeed synchronous, with NRTVF being a harmonic
of the imposed driving Reynolds number with frequency twice the driving frequency.

The two flows that we have found (RTVF and NRTVF) occur at different
wavenumbers and figures 4 and 5 make the selection of the wavenumber clear. In
figure 4 we see that α is always smaller for RTVF than NRTVF, and for both RTVF
and NRTVF α decreases as ω increases. Figure 5 shows the stability boundaries in
the (Remod , α)-plane for both RTVF and NRTVF at various values of the frequency
ω. For each frequency there are two curves – one corresponding to RTVF and one
corresponding to NRTVF – and each flow has its own critical wavenumber and
critical Reynolds number. Whether the latter is higher or lower for RTVF than
NRTVF (or vice versa) depends on ω.

Figure 6 shows how the Reynolds number Remod depends on frequency ω. Each
point on the figure represents the result of a separate run of the code starting from
initial seeding. The axial expansions eiαkz contain multiples of the critical wavenumber
shown in figure 4. It is apparent that at low frequencies RTVF is the first flow to
onset but at higher frequencies NRTVF is the first. It is apparent from figure 5 that,
if we increase the Reynolds number at a given frequency (say ω = 4) holding the
same value of wavenumber (say α =3), then circular Couette flow is followed by
RTVF (say at Remod ≈ 152) and then by NRTVF (say at Remod ≈ 178). Note that
even at the highest frequency of modulation of figure 6 (ω = 8) the thickness of the
Stokes layer is still comparable to the gap width (δs/δ = 0.5), so we are still far from
the high-frequency limit studied, for example, by Hollerbach et al. (2002) in spherical
geometry.
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Figure 4. Critical wavenumber α of the inner cylinder versus frequency ω
for RTVF and NRTVF.
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Figure 5. Modulation amplitude Remod of the inner cylinder versus wavenumber α
for RTVF and NRTVF at three frequencies.

Previous work on modulated Couette flow was done by Carmi & Tustaniwskyj
(1981) who did not detect the existence of NRTVF. Their approach was based on
studying the effects of infinitesimal perturbations over a cycle (Floquet theory). It is
possible that NRTVF is due to finite-amplitude effects: whereas in RTVF vr becomes
negative for part of the cycle, NRTVF decays only to a certain order of magnitude
level, at the end of a cycle, never becoming infinitesimal. For example, we found that
vr ∼ 10−1 for ω = 5 and Remod = 170.41. However, non-reversing solutions have been
found by Lopez & Marques (2002) using Floquet analysis for modulation of the
outer cylinder, so NRTVF could be due to a linear instability too. Only a full Floquet
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Figure 6. Critical Remod of the inner cylinder versus frequency ω for RTVF and NRTVF.
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Figure 7. Logarithm of the kinetic energy (in arbitrary units as in Willis & Barenghi 2002)
of the first azimuthal modes m = 0, 1, 2, 3 versus time for RTVF. Parameters as in figure 1.

analysis in the parameter range discussed can answer the question of whether the
non-reversing solutions are due to finite-amplitude effects or not.

3.3. Wavy modes

All calculations were performed including a sufficient level of truncation so as
to capture any possible three-dimensional nature of the flow. Azimuthal spectral
truncations as high as M = 8 were used. In all cases the flow was always found to be
axisymmetric.

Figures 7 and 8 show how the modes corresponding to m �= 0 are initially seeded
and grow, but, after the initial transient, they all eventually decay with time, leaving
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Figure 8. Logarithm of the kinetic energy (in arbitrary units as in Willis & Barenghi 2002)
of the first azimuthal modes m = 0, 1, 2, 3 versus time for NRTVF. Parameters as in figure 3.

an axisymmetric, oscillatory flow (m =0 only). This is in contrast to the results found
for axial oscillations of the inner cylinder by Marques & Lopez (1997), and more
recently for modulation of the outer cylinder by Lopez & Marques (2002), where the
solutions are non-axisymmetric in some parameter regimes.

4. Conclusion
We have reconsidered the simplest case of time-modulated Taylor–Couette flow,

in which the inner cylinder oscillates harmonically clockwise and counter-clockwise
and the outer cylinder is held fixed. We have found that, if the amplitude of the
modulation is large enough to destabilize circular Couette flow, two classes of Taylor
vortex flow are possible: reversing and non-reversing. In the latter the Taylor vortex
pairs always rotate in the same direction, despite the inner cylinder driving the flow in
the opposite direction. NRTVF takes place at sufficiently high modulation frequencies
for which there is not enough time for the toroidal motion to vanish to sufficiently
small values (still these frequencies are small enough that δs is comparable to δ).

Further study of this problem should include a Floquet analysis of the flow to
determine whether NRTVF is caused by linear instability (as in Lopez & Marques
2002) or finite-amplitude effects. If the latter is the case then NRTVF may be affected
by the weak Ekman circulation (absent in our calculation) which is necessarily induced
by the fixed top and bottom ends of the Taylor–Couette apparatus. The existence of
Taylor vortices whose meridional circulation is not affected by the direction of the
basic azimuthal flow is visible in some of the recent nonlinear numerical simulations of
Zhang (2002) and Zhang & Zhang (2002) of time-modulated spherical Couette flow,
so NRTVF is probably a robust effect which should be investigated experimentally.
In cylindrical geometry it should be possible to control the Ekman circulation by
using a non-uniform gap which produces a spatial ramp of the Reynolds number (as
done by Ning, Ahlers & Cannell 1990 and Wiener et al. 1999 for example), so that
the flow is subcritical near the top and bottom ends.
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